Computing Type I, Type II, and Type III Sums of Squares directly using the general linear model.

Data

These are the data from Howell (2007) Table 16.5 **except that two additional observations were added to cell(2,4).** The example in the book had the unfortunate feature that both levels of B had the same number of observations. That is no longer true, and makes it a bit easier to see the differences in the analyses.

I have added two extra columns to my SPSS data set. Agrp is just the coding of the levels of A as 1 and 2, while Bgrp is the coding of the levels of B as 1, 2, 3, 4. The other columns (except for dv) represent contrast coding.

The data file

5	1	1	0	0	1	0	0	1.00
7	1	1	0	0	1	0	0	1.00
9	1	1	0	0	1	0	0	1.00
8	1	1	0	0	1	0	0	1.00
2	1	0	1	0	0	1	0	1.00
5	1	0	1	0	0	1	0	1.00
7	1	0	1	0	0	1	0	1.00
3	1	0	1	0	0	1	0	1.00
9	1	0	1	0	0	1	0	1.00
8	1	0	0	1	0	0	1	1.00
11	1	0	0	1	0	0	1	1.00
12	1	0	0	1	0	0	1	1.00
14	1	0	0	1	0	0	1	1.00
11	1	-1	-1	-1	-1	-1	-1	1.00
15	1	-1	-1	-1	-1	-1	-1	1.00
16	1	-1	-1	-1	-1	-1	-1	1.00
10	1	-1	-1	-1	-1	-1	-1	1.00
9	1	-1	-1	-1	-1	-1	-1	1.00
7	-1	1	0	0	-1	0	0	2.00
9	-1	1	0	0	-1	0	0	2.00
10	-1	1	0	0	-1	0	0	2.00
9	-1	1	0	0	-1	0	0	2.00
3	-1	0	1	0	0	-1	0	2.00
8	-1	0	1	0	0	-1	0	2.00
9	-1	0	1	0	0	-1	0	2.00
11	-1	0	1	0	0	-1	0	2.00
9	-1	0	0	1	0	0	-1	2.00
12	-1	0	0	1	0	0	-1	2.00
14	-1	0	0	1	0	0	-1	2.00

8	-1	0	0	1	0	0	-1	2.00
7	-1	0	0	1	0	0	-1	2.00
11	-1	-1	-1	-1	1	1	1	2.00
14	-1	-1	-1	-1	1	1	1	2.00
10	-1	-1	-1	-1	1	1	1	2.00
12	-1	-1	-1	-1	1	1	1	2.00
13	-1	-1	-1	-1	1	1	1	2.00
11	-1	-1	-1	-1	1	1	1	2.00
12	-1	-1	-1	-1	1	1	1	2.00

The following are the different analyses as they are computed by SPSS version 15.

Type I A then B then AB

Dependent Variable: DV

Source	Type I Sum of Squares	df	Mean Square	F	Sig.				
Corrected Model	216.017(a)	7	30.860	5.046	.001				
Intercept	3410.526	1	3410.526	557.709	.000				
Agrp	9.579	1	9.579	1.566	.220				
Bgrp	186.225	3	62.075	10.151	.000				
Agrp * Bgrp	20.212	3	6.737	1.102	.364				
Error	183.457	30	6.115						
Total	3810.000	38							
Corrected Total	399.474	37							

a R Squared = .541 (Adjusted R Squared = .434)

Type I B then A then AB

Tests of Between-Subjects Effects

Tests of Between-Subjects Effects

Dependent Variable: DV

Source	Type I Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	216.017(a)	7	30.860	5.046	.001
Intercept	3410.526	1	3410.526	557.709	.000
Bgrp	193.251	3	64.417	10.534	.000
Agrp	2.553	1	2.553	.418	.523
Bgrp * Agrp	20.212	3	6.737	1.102	.364
Error	183.457	30	6.115		
Total	3810.000	38			
Corrected Total	399.474	37			

Type II

Tests of Between-Subjects Effects

Dependent Variable: DV								
Source	Type II Sum of Squares	df	Mean Square	F	Sig.			
Corrected Model	216.017(a)	7	30.860	5.046	.001			
Intercept	3410.526	1	3410.526	557.709	.000			
Agrp	2.553	1	2.553	.418	.523			
Bgrp	186.225	3	62.075	10.151	.000			
Agrp * Bgrp	20.212	3	6.737	1.102	.364			
Error	183.457	30	6.115					
Total	3810.000	38						
Corrected Total	399.474	37						

a R Squared = .541 (Adjusted R Squared = .434)

Type III

Tests of Between-Subjects Effects

Dependent Variable: DV

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	216.017(a)	7	30.860	5.046	.001
Intercept	3163.841	1	3163.841	517.370	.000
Agrp	3.464	1	3.464	.566	.458
Bgrp	185.172	3	61.724	10.093	.000
Agrp * Bgrp	20.212	3	6.737	1.102	.364
Error	183.457	30	6.115		
Total	3810.000	38			
Corrected Total	399.474	37			

a R Squared = .541 (Adjusted R Squared = .434)

Now I will run a whole set of regressions. Bear with me.

Using contrast coding for variable A alone: (i.e. $Y = b_1A$)

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	9.579	1	9.579	.884	.353(a)
	Residual	389.894	36	10.830		
	Total	399.474	37			

a Predictors: (Constant), A

b Dependent Variable: DV

Using contrast coding for variable B alone: (i.e. $Y = b_1B_1 + b_2B_2 + b_3B_3$)

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	193.251	3	64.417	10.621	.000(a)
	Residual	206.222	34	6.065		
	Total	399.474	37			

a Predictors: (Constant), B3, B2, B1

b Dependent Variable: DV

Using contrast coding for the interaction terms alone (i.e. $Y = b_1AB_1 + b_2AB_2 + b_3AB_3$)

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	20.538	3	6.846	.614	.610(a)
	Residual	378.936	34	11.145		
	Total	399.474	37			

a Predictors: (Constant), AB3, AB2, AB1

b Dependent Variable: DV

Using contrast terms for A and B but not AB (i.e. $Y = b_1A + b_2B_1 + b_3B_2 + b_4B_3$)

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	195.805	4	48.951	7.931	.000(a)
	Residual	203.669	33	6.172		
	Total	399.474	37			

a Predictors: (Constant), B3, A, B2, B1

Using contrasts for A and AB but not B $((i.e. Y = b_1A + b_2AB1 + b_3AB_2 + b_4AB_3)$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	30.845	4	7.711	.690	.604(a)
	Residual	368.629	33	11.171		
	Total	399.474	37			

ANOVA(b)

a Predictors: (Constant), AB3, A, AB2, AB1

b Dependent Variable: DV

Using contrasts for B and AB but not A $((i.e. Y = b_1B_1 + b_2AB_2 + b_3AB_3 b_4AB_1 + b_5AB_2 + b_6AB_3)$

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	212.552	6	35.425	5.875	.000(a)
	Residual	186.921	31	6.030		
	Total	399.474	37			

a Predictors: (Constant), AB3, B2, AB2, B3, B1, AB1

b Dependent Variable: DV

Now contrast codes for A, B, and AB (This is the full model)

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	216.017	7	30.860	5.046	.001(a)
	Residual	183.457	30	6.115		
	Total	399.474	37			

a Predictors: (Constant), AB3, B2, A, AB2, B3, B1, AB1

b Dependent Variable: DV

Type I sums of squares

For Type I each term is adjusted only for the terms that were entered before it. I will just use the orders A, B, AB and B, A, AB, but you could, if you wanted, us AB, B, A or A, AB, B, etc. I can't think why.

Let's start with Type I SS where the order of entry is A, B, AB

SSreg(A) = 9.579 This will be SS(A) in the Anova

SSreg(A,B) = 195.805 Gain is SSreg = 195.805 - 9.579 = 186.225 This will be SS(B) in the Anova

SSreg(A, B, AB) = 216.017Gain from previous model is 216.017 - 195.805 = 20.212This is SS(AB) in the Anova

Now Type I SS where the order of entry is B, A, AB

SSreg(B) = 193.251This is SS(B) in that Anova

SSreg(A,B) – 195.805 Gain is SS(Reg) is 195.805 – 193.251 = 2.554 This is SS(B)

SSreg(A, B, AB) = 216.017 Gain is 216.017 – 195.805 = 20.212 This is SS(AB)

For Type II you adjust B for A, A for B, and then AB for A and B. (If we had a three way, we would adjust A for B and C, B for A and C, C for A and B, AB for A, B, C, BC for A, B, C, AC for A, B, C, and ABC for A, B, C, AB, AC, BC. I have never tried that.)

SSreg(A,B) = 195.805 SSreg(A) = 9.579 Difference is 195.805 - 9.579 = 186.226

SSreg(B) = 193.251

Difference from A,B is 195.805 – 193.251 = 2.554

These are SS(A) and SS(B) in Anova.

For AB we take the full model SSreg(A,B,AB) = 216.017 SSreg(A,B) = 195.805Difference is 216.017 - 195.805 = 20.212This is SS(AB)

Type III Here everything is adjusted for everything else.

SSreg(A,B,AB) = 216.017 SSreg(A,B) = 195.805Difference is 216.017 - 195.805 = 20.212 This is SS(AB)

SSreg(A,AB) = 30.845 Diff from full model is 216.017 – 30.845 = 185.172

SSreg(B,AB) = 212.552 Diff from full model is 216.017 - 212.552 = 3.465

MS(Error)

In all of these analyses the error term would come from MSresidual of the full model, which is 6.115